Answer key to chapter 1 and 2 review IPC

1. F times a
2. T2 plus T1
3. $m$ times $v$
4. $\Delta \mathrm{D}$ divided by $\Delta T$
5. $a=43 \mathrm{~m} / \mathrm{s} 2$
6. S or $\mathrm{v}=3$ meters $/ \mathrm{sec}$
7. $D=45$ meters
8. $F=22$ newtons
9. $\mathrm{T}=80 \mathrm{sec}$
10. $S=\Delta D / \Delta T$
$\Delta D=S \Delta T$
$a=\Delta S / \Delta T$
$\Delta S=a \Delta T$
$\Delta \mathrm{T}=\Delta \mathrm{S} / \mathrm{a}$

A car travels $10 \mathrm{~m} / \mathrm{s}$ for 5 secs. Calculate how far it traveled.
Variables: $10 \mathrm{~m} / \mathrm{s}, 5 \mathrm{sec}$
Formula: $\mathrm{S}=\Delta \mathrm{D} / \Delta \mathrm{T}$
Solution: 50 m
You travel from Maine (100 miles away) to Vermont (300 miles away), in 4 hours. Calculate your speed.

Variables: D1= 100 miles, D2= 300 miles, $\mathrm{T}=4$ hours
Formula: $S=\Delta D / \Delta T$ and $\Delta D=D 2-D 1$
Solution: 50 mph
A bike goes $12 \mathrm{~m} / \mathrm{s}$ for 6 seconds. Calculate how far the bike traveled.
Variables: $12 \mathrm{~m} / \mathrm{s}, 6$ seconds
Formula: $\mathrm{a}=\Delta \mathrm{S} / \Delta \mathrm{T}$
Solution: $2 \mathrm{~m} / \mathrm{s} 2$
You're meeting a friend at 6 pm . She lives 180 miles away. The speed limit is 60 mph . When do you need to leave?

Variables: T2=6pm, $\Delta \mathrm{D}=180$ miles, $\mathrm{S}=60 \mathrm{mph}$
Solution $=3 \mathrm{pm}$

1. C
2. $D$
3. A
4. E
5. B
6. Control
7. Experimental
8. Control
9. Experimental
10. Experimental
11. Control
12. Control

Page 2:

1. D
2. C
3. A
4. E
5. F
6. B

At rest A, C
Fast B
Slow D
Backward D
Forward B
Independent variable: time (sec)
Dependent variable: position
14 m
Rise/run $=4 \mathrm{~m} / \mathrm{s}$
Slope stands for speed $\mathrm{m} / \mathrm{s}$
A person starts running from $3 \mathrm{~m} / \mathrm{s}$ to $9 \mathrm{~m} / \mathrm{s}$ in 2 seconds. Calculate the person's acceleration Variables: $\mathrm{S} 2=9 \mathrm{~m} / \mathrm{s}, \mathrm{S} 1=3 \mathrm{~m} / \mathrm{s}, \mathrm{T}=2 \mathrm{sec}$

Formula: $\Delta \mathrm{S} / \mathrm{T}$
Solve: $3 \mathrm{~m} / \mathrm{s} 2$
A plane stops from 300 mph in 15 seconds. Calculate the plane's acceleration
Variables: $\mathrm{S} 1=0, \mathrm{~S} 2=300 \mathrm{mph}, 15$ seconds
Formula: $a=\Delta S / T$
Solve: $20 \mathrm{~m} / \mathrm{s} 2$
Speed or velocity:

1. Speed
2. Speed
3. Velocity

Scalar or vector

1. S
2. V
3. V

Speed vs. time graph

1. Constant speed B, D
2. Deceleration C
3. Acceleration A
