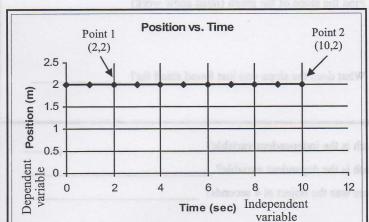

Period:

Graphing Speed; Slope

The graph on the right is a distance versus time graph. That means that it shows how far an object has traveled after so many seconds.

This is what we call a linear graph, because the data creates a straight line.

Data


Time	Distance
(sec)	(m)
0	0
0.5	5
1	10
1.5	15
2	20

Slope has actual meaning in science — Slope for the above graph:

slope =
$$\frac{\text{rise}}{\text{run}}$$
 = $\frac{\Delta y}{\Delta x}$ = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{(20 - 10)\text{m}}{(2 - 1)\text{ sec}}$ = $\frac{10\text{m}}{1\text{ sec}}$ = 10m/s

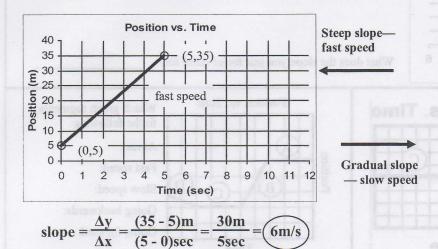
The slope of a position vs. time graph is SPEED

Graphing Conventions: The independent variable is always on the x-axis. The dependent variable is always on the y-axis.

Independent variable—Time Dependent variable—position

Linear graph.

Position vs. time graph, so slope = speed (position/time)

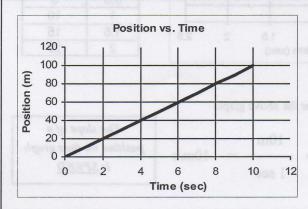

(Pick any two points) Slope = rise/run = $\Delta y/\Delta x$ =

$$\frac{(2-2)m}{(10-2)\sec} = \frac{0 \text{ m}}{8 \sec} = 0 \text{ m/s}$$

Time is always an independent variable (x-axis).

The slope (speed) of a flat line is zero-no speed. The object is at rest.

Position vs. Time 40 35 30 (E) 25 Position (10,15)slow speed 20 15 (0,5)10 0 1 2 3 4 5 6 7 8 9 10 11 12

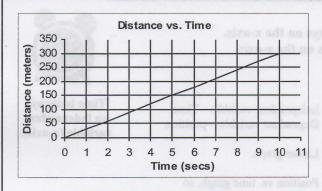

 $\frac{\Delta y}{\Delta x} = \frac{(15 - 5)m}{(10 - 0)sec} = \frac{10m}{10sec}$

- 1. Linear
- 2. Independent variable
- 3. Dependent variable
- 4. Slope

- A. The variable on the vertical axis (y-axis).
- B. A type of graph that looks like a straight line.
- C. The measure of the steepness of a line.
- D. The variable on the horizontal axis (x-axis).

Which	of	the	foll	owing	are	units	for	speed'
VV IIICII	UI	uic	TOH	Ownig	arc	umits	101	specu

km	meters sec	meters	cm sec	1000
sec	miles hour	km min	meter sec ²	

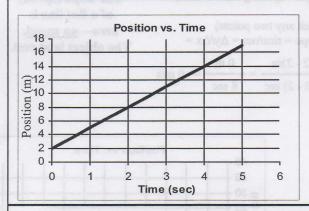

Which is the independent variable?

Which is the dependent variable?

Where was the object at 4 seconds?

Find the slope of the graph (must show work)

What does the slope you just found stand for?



When did the object reach 150 meters?

Where was the object at 9 seconds?

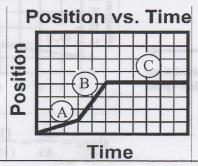
Find the slope of the graph (must show work)

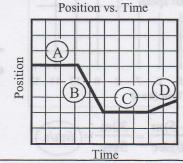
What does the slope you just found stand for?

Which is the independent variable?

Which is the dependent variable? ___

Where was the object at 4 seconds?


Find the slope of the graph (must show work)


What does the slope you just found stand for?

The slope of this graph means:

The segment that shows fast speed:

The segment that shows slow speed:

Which graph segments fit the following:

At rest:

Fast speed:

Slow speed:

Going backwards:

AV (35

Going forward: