Speed	and	Accele	ration	Lab
-------	-----	--------	--------	-----

Problem: How fast can you accelerate and can you accelerate from a sprinting start for 200 meters?

Gathered Data:

• Speed is the distance an object travels per unit of time. Speed can be expressed as kilometers per hour (km/hr), **meters per second** (m/s), and so on. In most cases, objects don't travel at a constant speed. Therefore, the average speed is used to describe the motion.

s = speed, t = time, and d = distance

• Acceleration is the rate at which an object's speed changes. Acceleration can be expressed as meters per second per second (m/s/s or m/s²). Forces such as gravity, air resistance, and friction can cause an object to decelerate (decrease speed over time).

a = acceleration, $\triangle_V = change in velocity or speed, and <math>t = time$

 $\Delta_{\rm V}$ = final velocity or speed – initial velocity or speed

Hypothesis: (answer the questions above)

Experiment:

Materials- 200m track, Stop Watch

Procedure-

- 1. Students run a 200m from 50yd line to 50yd line.
- 2. Time is recorded at the 100m mark and finish.

Data:

	0m-100m split	0m-100m speed	0m-100m Accel	100-200m split	100-200m speed	100-200m Accel	0-200m time	0-200m speed
1	A					Capitand	108 100 281 001	SO BOW S
2				elana neba-	dara (2,200 to	march wols o	ors cause you	3. What fac
3				elabog mend	usel 11 verius en	mb wels of s	ers cause a bil	4. What fee
4								
5	I = alay (c = 1 min, 6	I mile, 60 st	1g8961) .de	en o) alver teso	û baseje mûû	e Convert the I	5. Challeng hours
6								

Calculations: All answers should be placed in the data table above.

- 1. Subtract 0-200m time from 0-100m split to get the 100-200m split.
- 2. Calculate the speed for the 0-100m, 100-200m and the 0-200m times.
- 3. Calculate the acceleration for the 0-100m and the 100-200m.

Construct a bar graph showing the acceleration change between the 1^{st} and 2^{nd} 100m for each subject above.

Conclusion:

- 1. Did any person accelerate for the entire 200m?
- 2. What was the fastest acceleration?
- 3. What factors cause you to slow down or decelerate when running?
- 4. What factors cause a bike to slow down after it has been pedaled?
- 5. Challenge Convert the 200m speed from m/s to mph. (1609m = 1 mile, 60 sec = 1 min, 60 min = 1 hour)