Speed /Frequency / Wavelength

Equation: Speed of all Electromagnetic Spectrum Waves

C=Speed (m/s) = Frequency (Hz) x Wavelength (m) or C = v

Remember $=(\mathbf{c})=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$; every time you will plug that constant in for speed of light!

Let's do \#1 as an example

1. Violet light has a wavelength of $4.10 \times 10^{-12} \mathrm{~m}$. What is the frequency? Given:
Wavelength $\lambda=4.10 \times 10^{-12} \mathrm{~m}$
Speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Unknown= frequency
$\mathrm{V}=\frac{\boldsymbol{C}}{\boldsymbol{\lambda}} \quad$ *double check units on wavelength and speed of light to make sure they are both "meters"
$\mathrm{V}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.10 \times 10^{-12} \mathrm{~m}}$
$V=7.31 \times 10^{19} \mathrm{~Hz}$
2. Green light has a frequency of $6.01 \times 10^{14} \mathrm{~Hz}$. What is the wavelength?

Name:
3. What is the wavelength (in meters) of the electromagnetic carrier wave transmitted by The Sports Fan radio station at a frequency of 640 kHz ?(Hint: convert kHz into Hz by multiplying by 10^{3}.)
4. Calculate the wavelength of radiation with a frequency of $8.0 \times 10^{\mathbf{1 4}} \mathbf{~ H z}$.
5. What is the wavelength of light with a frequency of $7.66 \times 10^{14} \mathbf{~ H z}$?
6. A helium laser emits light with a wavelength of 633 nm . What is the frequency of the light? (Hint: convert 633nm to m by dividing by 10^{9})
7. What is the wavelength of X-rays having a frequency of $4.80 \times 10^{17} \mathrm{~Hz}$?
8. An FM radio station broadcasts at a frequency of 107.9 MHz . What is the wavelength of the radio signal?
(Hint: First, convert Mega Hertz [MHz] into Hertz by multiplying by 10^{6})

Name:

Energy / Frequency / Wavelength

Energy $(\mathrm{J})=\mathrm{h}^{\mathrm{x}}$ Frequency $(\mathrm{Hz}) \quad \mathrm{h}($ Planck's Constant $)=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Let's do \#9 as an example
9. Calculate the energy of a photon of radiation with a frequency of $8.5 \times 10^{14} \mathrm{~Hz}$. Given
Frequency $=8.5 \times 10^{14} \mathrm{~Hz}$
h (Planck's Constant) $=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Unknown= energy
E=hv
Let's plug and chug! $E=\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(8.5 \times 10^{14} \mathrm{~Hz}\right)=5.6 \times 10^{-19}$ joules
10. Calculate the energy of a gamma ray photon whose frequency is $5.02 \times 10^{20} \mathrm{~Hz}$?
11. Calculate the energy of a photon of radiation with a wavelength of $6.4 \times 10^{-7} \mathrm{~m}$.
12. What is the energy of light whose wavelength is $4.06 \times 10^{-11} \mathrm{~m}$?

15. Rank these parts of the electromagnetic spectrum from lowest energy (1) to highest (7):
Gamma Infrared Microwave Radio Visible Ultraviolet X-ray

Rank these parts of the electromagnetic spectrum from lowest frequency (a) to highest (g):
Gamma Infrared Microwave Radio Visible Ultraviolet X-ray

Rank these parts of the electromagnetic spectrum from shortest wavelength (A) to longest (G):
Gamma Infrared Microwave Radio Visible Ultraviolet X-ray
14. What is the relationship between frequency and wavelength? (Direct or Inverse)

What is the relationship between frequency and energy? (Direct or Inverse)

Notice how Tommy Turtle, with his slow frequency, is making large wavelengths. Whereas Ron Rabbit, with his fast frequency, is making small wavelengths.

