WS - Chapter 14 - electrons and The Periodic table 2010

1. In general, the atomic **mass** of elements **increases** as the atomic **number increases**. Which of these pairs of **consecutive** elements is an **exception** to this generalization? Li & Be b) N & O c) Ar & K d) Ni & Cu a) 2. Due to such exceptions, elements on the modern P.T. are ordered by their atomic _____ 3 – 7. Match each Electron Configuration with a region on the periodic table: 3. *s* and nearby *d* sublevel contain electrons A. Noble Gases 4. outermost s and nearby f sublevels contain electrons B. Representative Elements _____ 5. outermost *s* and *p* sublevels are completely filled C. Transition Metals 6. Outermost *s* and *p* sublevels are only partly filled D. Inner Transition Metals _____ 7. For these, the **group number** equals the **number** of **valence** *s* and *p* electrons 8. Nitrogen is a nonmetallic gas, while Bismuth is a solid metal. However, Nitrogen and Bismuth are **both** included in **Group 5A** because they have _____ **valence electrons** . 9. The **Noble Gases** are **unreactive**, because their _____ 10. Name the groups whose elements have the following *valence* (outer) electron configuration: s^1 - Group ____ b) s^2p^5 - Group ____ $s^2 p^6$ - Group c) a) 11. How many valence electrons are found in each of the following? a) the elements of the oxygen family? _____ b) the element in Group 3A, Period 5 - _____ c) the element with the electron configuration $1s^2 2s^2 2p^5$ -12. See text, p. 398-400, Figure 14.8, p. 399 and Fig 14.10, p. 401 a) As you go **down** a **group**, the **atomic radius** _____, because the number of ______ levels increases and the outermost orbital is _____. b) As you go from left to right across a **period**, the **atomic radius** _____: energy level remains the same, but increasing nuclear charge _____ the electrons closer. c) Group ____A atoms all have very **large** radii, while Group ____A all have **small** radii. 13. See Table 14.1, p. 402 and Fig 14.12, p. 403 a) The first ionization energy for Group IA is very _____, while the **second** ionization energy for Group **IA** is very _____. b) Group ____A has the **highest first** ionization energy of all (doesn't want to let go at all!) c) K has a lower first i.e. than Li, because its outer electron is _____ the nucleus. 14. Identify the two elements below (write the **symbol**), using the information listed below: a) Element **X** - reacts with **sodium** to form Na_2X ; located in **Period 2** = _____ b) Element **Y** - reacts with oxygen to form Y_2O ; largest atomic radius in Period 4;

	lowest ionization energy in Period 4 =
15.	The atomic numbers listed below have these electron configurations:
	$#3 - 1s^2 2s^1 \qquad #11 - 1s^2 2s^2 2p^6 3s^1 \qquad #19 - 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
	a) How many valence electrons does each atom have?
	b) These elements are all located in Group A on the periodic table.
	c) You should expect to find out that the chemical properties of these elements are all
	(Hint: British guys and bathtub)
	d) What "family" name is given to this group of elements? Metals
16.	The atomic numbers listed below have these electron configurations:
	$\#9 - 1s^2 2s^2 2p^5 \qquad \#17 - 1s^2 2s^2 2p^6 3s^2 3p^5 \qquad \#35 - [Ar] 4s^2 3d^{10} 4p^5$
	a) Comparing these three electron configurations, what do they have in common?
	They all have
	b) These elements are all located in Group A on the periodic table.
	c) You should expect to find out that the chemical properties of these elements are all
	(but not like the elements in IA).
	d) This "family" is named the, because they form many common salts.
17.	Calcium (Ca) element 20, forms Ca^{2+} as an ion by losing two electrons.
	The electron configuration for the neutral Ca atom is $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$.
	Complete the electron configuration for the Ca^{2+} ion: $1s^2 2s^2 2p^6$
18.	Sulfur (S) element 16, forms S^{2-} as an ion by gaining two electrons.
	The electron configuration for the neutral S atom is $1s^2 2s^2 2p^6 3s^2 3p^4$.
	Complete the electron configuration for the S ²⁻ ion: $1s^2 2s^2 2p^6$
19.	How do your answers for 17 and 18 compare? They should be the same, because both the
	Calcium and Sulfur ions are trying to achieve an inert gas configuration (in this case, the
	element (Their ions are isoelectronic with this element's neutral atom.)
20.	Check the Ion Charges list on page 143 if you aren't sure how to answer the following:
	a) Group IA metals form ions with a charge.
	b) Group IIA metals form ions with a charge.
	c) Group IIIA metals form ions with a charge.
	d) Group VIA elements form ions with a charge.
	e) Group VIIA elements form ions with a charge.

f) What **charge** would Group **VIIIA** elements have?

Bonus: Ions of groups **3B - 2B** (transition metals) have **variable** charges. What is different about their **electron configurations** is that their _____ orbitals are just starting to fill in. Sometimes, these _____ electrons are **unstable** and will act as additional **valence** electrons.